The Status of DME Development in KOREA

Hoseo University
Chemical and Industrial Technology Center
Dep’t of Chemical Engineering
Director and Prof. Gye-Gyu Lim, Ph.D.

BPPT Conference Hall, Jakarta, Indonesia, 2013
History of DME Activities

- DME Manufacturing Technology Development (KOGAS)
 - LAB scale (’00~’03)
 - 50Kg/day DME Pilot Plant (’03~’05)
 - 10Ton/day DME Demo Plant (’04~’09)
 - ’04~’06: Safety standard study for DME fuel (KGSC)
 - ’04~’07: Basic property study for DME-LPG blending fuel (KGSC)
- DME Partnership Program
 - ’04~’07: Application technology development for DME fueled Power plant (KEPRI)
 - ’05~’08: DME fueled diesel engine for Bus (KIER)
- Demonstration and Model Business
 - ’07~’11: DME demonstration and model business (MKE, KOGAS, KGS, K-Petro, KDA, Korea LPGas)

Target
Commercial scale DME production plant development from Small-medium size gas fields

BPPT Conference Hall, Jakarta, Indonesia, 2013

KOGAS DME Technology

- Direct Synthesis (1step, KOGAS)
 - Syngas → Reforming → DME Reaction → DME
- Indirect synthesis (2 steps, TEC, Lurgi)
 - Syngas → Reformer, Combined SMR, Heat Exchange, Autothermal
 - Methanol synthesis
 - Dehydration

<table>
<thead>
<tr>
<th>Process Comparison</th>
<th>KOGAS Direct Process</th>
<th>Indirect Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process Development Stage</td>
<td>10 Metric Tons/Day Demonstration Plant</td>
<td>30 Metric Tons/Day Plant</td>
</tr>
<tr>
<td>Process Type</td>
<td>One-Step or "Direct"</td>
<td>Two-Step or "Indirect"</td>
</tr>
<tr>
<td>Number of Reaction Steps</td>
<td>2 (Reformer → DME)</td>
<td>3 (Reformer → Methanol → DME)</td>
</tr>
<tr>
<td>Number of Major Equipment</td>
<td>80 plus ASU</td>
<td>90 plus ASU</td>
</tr>
<tr>
<td>Tolerance for High CO<sub>2</sub> in NG Feed</td>
<td>Up to 20 mole% CO<sub>2</sub></td>
<td>Not Known</td>
</tr>
<tr>
<td>Reforming</td>
<td>Tri-Reformer → Utilize High CO<sub>2</sub>, NG Feed</td>
<td>Combined SMR, Heat Exchange, Autothermal</td>
</tr>
<tr>
<td>DME Production</td>
<td>Single Step from Syngas to DME → Less Complex Process</td>
<td>Syngas to MeOH followed by MeOH to DME</td>
</tr>
</tbody>
</table>

BPPT Conference Hall, Jakarta, Indonesia, 2013
KOGAS DME Process

- **KOGAS DME Technologies**
 - Syngas process: tri-reforming method (0-20% CO₂)
 - DME Process: fixed bed reactor with shell & tube

- Development status
 - 2003: Pilot plant Construction and Operation (50~100 kg/d) (1,457 ~ 2,914 MJ/d)
 - 2008: Demo plant Construction and Operation (10 ton/d) (291 GJ/d)
 - Establishment of catalyst recipe and reactor design for commercial plant

Reforming process
- Syngas Production Process
- DME Process
- DME Process (heat removal system)

Plant View
- Area: 6,000 M²
- Cap: 10 ton/d

DME Prospects (Market) in Korea

- **At present**: Cosmetics, Spray propellant, Intermediate of agricultural chemical, LPG blending.
- **In future**: Power generation, Transportation, Households & Commercial, etc.
 (Korea will use it for households & commercial, transportation fuel at 2013)

Future
- Emergency diesel generator
- Community energy supply system
- Fuel cell
- DME-FCV
- Industrial fuel
- Home-use
- DME station
- Diesel engine car
KOGAS Design Package for Commercialization

- **Capacity**
 - 3000TPA demo Plant
 - 300,000TPA Commercial Plant
 - 1,000,000TPA Commercial Plant

- **Site**
 - Incheon LNG Terminal in KOGAS
 - Sabah State in Malaysia: SOGIP (Sipitang Oil & Gas Industrial Park)
 - Subsea gas field in Malaysia / Australia

- **Design**
 - For Construction
 - Basic Engineering Package
 - Pre-FEED

- **Resource**
 - BOG of LNG terminal
 - PNG (Kimanis–Bintulu pipeline)
 - Subsea gas field

- **Process Simulation**

- **Layout**

Source: DSME-KOGAS promotional video

DME FPSO Design

- **Inlet facility**
- **Desulfurization**
- **Reforming**
- **Power Generation**
- **DME Synthesis**
- **Purification**
- **Offloading**
- **Air Separation Unit**
- **Steam Generation**

Source: DSME-KOGAS promotional video

DME Synthesis Section
Syngas/CO2 Recycle Section
DME Purification Section

BPPT Conference Hall, Jakarta, Indonesia, 2013
KOGAS DME Commercialization

Gas field \rightarrow DME commercialization

- DME import until 2013, Expected 1.5 million tons on 2015
- Establishment of commercial technology optimization
- Secured gas field (2010)
- Licensing of core technology
- Development of core technology of DME FPSO
- Securing gas field in Indonesia, Vietnam etc
- Secure economic of non-economic gas field containing CO2
- Domestic supply and market expansion

CBM \rightarrow DME commercialization

- Production of 10,000 ton from coal and CBM
- Resource development cooperation projects in Mongolia (2009~12)
- Secure resources from applied commercial technology
- Improvements of exploitation of Mongolia
- New growth green energy projects
- New growth businesses in KOGAS
- LPG and diesel alternative clean fuel supply
- Domestic supply and market expansion

Demonstration step in 2009, Penetration from model distribution until 2011
Basic Design Package for Plant(1)

Completion of Basic Design Package of 300,000 ton/yr DME production ('11.7)
- Development of Plant Engineering based on the KOGAS DME core technology (catalyst, reactor, process)

- Plant Capacity :
 - DME : 300,000 Ton/Yr
 - MeOH : 72,500 Ton/Yr
- Product purity :
 - DME 99.6 wt% / MeOH 98.0 wt%
- Storage Capacity :
 - DME 25,000 M³ x 2set (64 days)
 - MeOH 12,000 M³ x 1set (32 days)
- Locations :
 - Middle-east Asia (Saudi Arabia), Mozambique (Africa) Etc.

※ DME 300,000 ton/yr = 8,742,000 GJ/yr

Candidate location (Saudi Arabia)

Outline of DME Project in Nigeria

- Production Capacity : 300,000 tons X 2 trains of DME a year
- Technology : Patented technology developed by KOGAS
- Natural Gas Consumption : 540,000 tons of NG a year (for 25yrs. 1tcf)
 (Except utility fuel for boiler)
- CO₂ Consumption : 0-64,000 tons of CO₂ a year (vary as CO₂% contained)
- Plant Site : Close to gas line & Port, 300,000M² (74acre)
 (Onne FTZ, Bonny Island)
- Target Market : South Korea, India, Africa. Indonesia, EU, etc.
- Application : House Cooking Fuel, Vehicle engine/ Power Generation Fuel Chemicals (Spray Propellant, etc.)

※ Natural Gas 1tcf = 28,317,000 M³/d

BPPT Conference Hall, Jakarta, Indonesia, 2013
Installation site for DME plant in Nigeria

Outline of DME Project in Malaysia

- Production Capacity: 300,000 tons of DME a year
- Technology: Patented technology developed by KOGAS
- Natural Gas Consumption: 60mmcf/d of Natural gas (12,856 ton/d)
- Electricity: 60MW (supply from nearby electric power plant)
- Capital Requirement: up $333,000,000
- Plant Site: Close to gas line & Port, 150,000M² (37 acre) SOGIP (Sipitang Oil & Gas Industrial Park) of Sabah State
- Target Market: Malaysia, Indonesia, South Korea
- Application: House Cooking Fuel, Vehicle engine/ Power Generation Fuel, Chemicals (Spray Propellant, etc.)

※ DME 300,000 ton/yr = 8,742,000 GJ/yr, ※ Natural Gas 60mmscf/d = 771,351 ton/d
Installation site for DME plant in Malaysia

- New Natural Gas of Sabah State: 750mmcf/d (9,642,000 ton/d)
 - LNG Liquefaction etc.: 500mmcf/d (6,428,000 ton/d) (for Bintulu)
 - Oil & Gas Industry: 250mmcf/d (3,214,000 ton/d) (SOGIP)
 - Fertilizer (90mmcf/d), Power generation (90mmcf/d), LPG (10mmcf/d)
 - Unknown (60mmcf/d), DME (Sabah state project)
- Potential Fields & Locations
 - Sabah State of Malaysia, Sipitang Oil & Gas Industrial Park (SOGIP)

Project Economics (1)

<table>
<thead>
<tr>
<th>Economic Analysis – 300,000 ton/yr</th>
<th>Evaluation Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluation Input Parameters</td>
<td>Payback Time</td>
</tr>
<tr>
<td>Feed Gas Price</td>
<td>US$ 3.0/mmbtu</td>
</tr>
<tr>
<td>DME Production Cost</td>
<td>US$ 389/ton</td>
</tr>
<tr>
<td>DME Price (LPG Price)</td>
<td>US$ 650/ton (US$ 900/ton)</td>
</tr>
<tr>
<td>Investment Cost</td>
<td>US$ 383 million</td>
</tr>
<tr>
<td>Project lifespan</td>
<td>25 yrs</td>
</tr>
<tr>
<td>Finance rate</td>
<td>10 %</td>
</tr>
</tbody>
</table>

- LPG price: average price from 2010.10 to 2011.09 (Basis: C&F [cost & freight])
- PI*: Profitability index

* LPG price: average price from 2010.10 to 2011.09 [Basis: C&F (cost & freight)]
* PI: Profitability index
<table>
<thead>
<tr>
<th>Gas Cost</th>
<th>NG Cost per DME production</th>
<th>CAPEX</th>
<th>OPEX</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>OPEX(Tax & Insurance)</td>
<td>OPEX(Transportation)</td>
</tr>
<tr>
<td>2.0</td>
<td>3.01</td>
<td>2.67</td>
<td>1.22</td>
<td>0.17</td>
</tr>
<tr>
<td>3.0</td>
<td>4.52</td>
<td>2.67</td>
<td>1.22</td>
<td>0.17</td>
</tr>
<tr>
<td>4.0</td>
<td>6.03</td>
<td>2.67</td>
<td>1.22</td>
<td>0.17</td>
</tr>
</tbody>
</table>
Demonstration test for LPG replace(1)

- **Objective**
 - To make the regulation of DME-LPG blending fuel
 - To ensure the safety of facilities for user and gas supplier
 - To investigate the user satisfaction

- **Period**: 2010. 9 ~ 2011. 11

<table>
<thead>
<tr>
<th>LPG stations</th>
<th>Users(Household/medium size)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dong-Bang City Gas Industry (Kangreung City, Kangwon)</td>
<td>51 / 33 (84)</td>
<td></td>
</tr>
<tr>
<td>Youngjin Energy (Youngkwang City, Jeonnam)</td>
<td>48 / 37 (85)</td>
<td></td>
</tr>
<tr>
<td>Mokpo City Gas (Mokpo City, Jeonnam)</td>
<td>1 / 49 (50)</td>
<td></td>
</tr>
<tr>
<td>Chunil Gas (Pohang City, Kyungbuk)</td>
<td>2 / 14 (16)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>102 / 133 (235)</td>
<td></td>
</tr>
</tbody>
</table>

Demonstration test for LPG replace(2)

Supply flow of DME-LPG bled fuel

- DME 20wt% from Incheon DME Plant (KOAGS)
- LPG 80wt% from Incheon LPG Terminal
- DME 20wt% + LPG 80wt% to Dongbang City Gas
- DME 20wt% + LPG 80wt% to Youngjin City Gas
- DME 20wt% + LPG 80wt% to Mokpo City Gas

- Households Use (102 Houses)
- Medium size Use (133 Cooks)
Demonstration test for LPG replace (3)

1. DME loading (KOGAS)
2. Propane loading (E1)
3. DME-LPG unloading (LPG station)

BPPT Conference Hall, Jakarta, Indonesia, 2013

Demonstration test for LPG replace (4)

Results of demonstration test

- To check the result of safety: No issue by using DME-LPG blend
- User satisfaction: 93% +
 - Satisfaction % of equal or better to compare with LPG
- If DME-LPG is cheaper than LPG, 80% of user will use DME-LPG blend

Set up regulations enabling use of DME-LPG blend on commercial business
- To prepare quality and safety standard of DME-LPG

BPPT Conference Hall, Jakarta, Indonesia, 2013

DME – Alternative Fuel

An enforcement ordinance of *Petroleum and Substitute Fuel Business Act*

Article No. 5 (Kinds of Alternative Fuels)

Biodiesel Bioethanol CTL Orimulsion (Bitumen) Emulsified Fuel GTL DME Biogas Etc.

Power generation Cooking

* What level can DME be blended into LPG without affecting the performance of the common LPG vehicles?

100% DME DME-LPG Mixtures 100% LPG

BPPT Conference Hall, Jakarta, Indonesia, 2013

Determination of Optimum DME-LPG Blending Ratio

LPG engine performance & emission test for DME level

Engine durability test (300 hr)

DME 5 mol%

Simulation test of LPG engine system (2 000 hr)

BPPT Conference Hall, Jakarta, Indonesia, 2013
Project Schedule

- **Target Mileage**
 - April 2010: 0 km
 - Oct. 2011: 60,000 km
 - Mileage: First year: 30,000 km
 - Second year: 60,000 km

- **Exhaust Emission, Fuel Economy** (per 10,000 km)
 - First year: 30,000 km

- **Cold Weather Performance Test** (per 30,000 km)
 - First year: 60,000 km

Testing Procedures

- Demo Plant: KOGAS
- Analysis of DME-LPG Blends
- Filling station: K-Petro
- DME(5 mol%) LPG Blending
- Gas Chromatography
- Mode Test
- Field Test: Total mileage: 60,000 km
- Distribution and filling

BPPT Conference Hall, Jakarta, Indonesia, 2013
Specification of test vehicle

<table>
<thead>
<tr>
<th>Description</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPG vehicle</td>
<td>![Car Images]</td>
</tr>
<tr>
<td>Fuel supply type</td>
<td>LPLi</td>
</tr>
<tr>
<td>Valve mechanism</td>
<td>DOHC</td>
</tr>
<tr>
<td>Displacement (cc)</td>
<td>1 998</td>
</tr>
<tr>
<td>Wheel base (mm)</td>
<td>2 700</td>
</tr>
<tr>
<td>Max. power (ps/rpm)</td>
<td>136/6 000</td>
</tr>
<tr>
<td>Max. torque (kg m/rpm)</td>
<td>18.9/4 250</td>
</tr>
</tbody>
</table>

BPPT Conference Hall, Jakarta, Indonesia, 2013

Vehicle Performance Test

- **Fuel economy**
 - CVS-75(FTP-75) mode
 - HWFET mode (Highway fuel economy cycle)

- **Exhaust emissions**
 - CO, NMHC, NOX, CH4

- **Acceleration & Power**
 - 20 → 100 km/h

- **Cold Weather Performance Test**
 - Starting time and drivability at -15 °C

BPPT Conference Hall, Jakarta, Indonesia, 2013
Draft of DME LPG Specification Standard for Autogas

LPG fuel spec. (in Korea) 1)

<table>
<thead>
<tr>
<th>Item</th>
<th>LPG No. 1 (for domestic)</th>
<th>LPG No. 2 (for automotive fuel)</th>
<th>Draft for DME-LPG blends</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>summer</td>
<td>winter</td>
<td>summer</td>
</tr>
<tr>
<td>C3 Hydrocarbon</td>
<td>>90</td>
<td>≤10</td>
<td>25~35</td>
</tr>
<tr>
<td>C4 Hydrocarbon</td>
<td>-</td>
<td>≥85</td>
<td>-</td>
</tr>
<tr>
<td>DME</td>
<td>-</td>
<td>-</td>
<td>≤19.3</td>
</tr>
<tr>
<td>Butadiene</td>
<td>≤0.5</td>
<td>≤0.5</td>
<td>12)</td>
</tr>
<tr>
<td>Sulfur4) (mg/kg)</td>
<td>≤40</td>
<td>≤40</td>
<td>≤40</td>
</tr>
<tr>
<td>Vapor pressure (40 °C, MPa)</td>
<td>≤1.53</td>
<td>≤1.27</td>
<td>≤1.43</td>
</tr>
<tr>
<td>Density (15 °C, kg/m³)</td>
<td>-</td>
<td>500~620</td>
<td>-</td>
</tr>
<tr>
<td>Residue (mL)</td>
<td>≤0.05</td>
<td>≤0.05</td>
<td>≤0.05</td>
</tr>
<tr>
<td>Copper corrosion (40 °C, 1 h)</td>
<td>No. 1</td>
<td>No. 1</td>
<td>No. 1</td>
</tr>
<tr>
<td>Water</td>
<td>pass</td>
<td>-</td>
<td>≤0.04 wt%</td>
</tr>
</tbody>
</table>

2. From November to March
3. Including butadiene as well as other hydrocarbons (methanol, CO2, methyl formate etc.)
4. After adding odorant

BPPT Conference Hall, Jakarta, Indonesia, 2013

Development of DME Vehicle

- Improvement of vehicle performance
 - Control logic
 - Engine calibration

Engine test
- DME engine test
- Experiment in main driving domain

Engine calibration/ECU mapping
- Engine map using modeling
- Development ECU for DME engine

Fuel feed system
- Improvement of drivability
 - Development of ECU
 - Fuel feed system
- Make-up of diesel/DME bi-fuel system

BPPT Conference Hall, Jakarta, Indonesia, 2013
활용기술 현황

DME 차량 개발
- 기존 LPG 차량에 DME-LPG 혼합연료 공급
- 순수 DME 차량 개발: DME 버스, 트럭

DME 버스
- 33인승 버스

승차정원: 33+1 (대우 BM090)
배기량: 8,071 cc
형식: 6기통, 터보 엔터클러
ENGINE: DEDBTIS
최대 출력: 225 PS/2,300 rpm
최대 토크: 90 Kg.m
최고 속도: 120km/h

Transportation

Agriculture

DME boiler performance test

Direct injection DME combustion Boiler

Boiler test system Diagram

DME application test
Gas boiler performance test

DME Burners
Thank you